4,352 research outputs found

    Self-assembled guanine ribbons as wide-bandgap semiconductors

    Full text link
    We present a first principle study about the stability and the electronic properties of a new biomolecular solid-state material, obtained by the self-assembling of guanine (G) molecules. We consider hydrogen-bonded planar ribbons in isolated and stacked configurations. These aggregates present electronic properties similar to inorganic wide-bandgap semiconductors. The formation of Bloch-type orbitals is observed along the stacking direction, while it is negligible in the ribbon plane. Global band-like conduction may be affected by a dipole-field which spontaneously arises along the ribbon axis. Our results indicate that G-ribbon assemblies are promising materials for biomolecular nanodevices, consistently with recent experimental results.Comment: 7 pages, 3 figures, to be published in Physica

    Set-open topologies on function spaces

    Full text link
    [EN] Let X and Y be topological spaces, F(X,Y) the set of all functions from X into Y and C(X,Y) the set of all continuous functions in F(X,Y). We study various set-open topologies tλ (λ ⊆ P(X)) on F(X,Y) and consider their existence, comparison and coincidence in the setting of Y a general topological space as well as for Y = R. Further, we consider the parallel notion of quasi-uniform convergence topologies Uλ (λ ⊆ P(X)) on F(X,Y) to discuss Uλ-closedness and right Uλ-K-completeness properties of a certain subspace of F(X,Y) in the case of Y a locally symmetric quasi-uniform space. We include some counter-examples to justify our comments.The authors wish to thank Professors H. P. A. K ̈unziand R. A. McCoy for communicating to us useful information of various con-cepts used in this paper and also the anonymous referee for his/her commentsthat helped us to correct some errors and improve the presentation.Alqurashi, WK.; Khan, LA.; Osipov, AV. (2018). Set-open topologies on function spaces. Applied General Topology. 19(1):55-64. doi:10.4995/agt.2018.7630SWORD556419

    Improved simulation of fire-vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1)

    Get PDF
    The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in Australian savannas. We also show that the model simulates biomass recovery rates consistent with observations from several different regions of the world characterised by resprouting vegetation. The new model (LPX-Mv1) produces an improved simulation of observed vegetation composition and mean annual burnt area, by 33 and 18% respectively compared to LPX

    Topology of Vibro-Impact Systems in the Neighborhood of Grazing

    Full text link
    The grazing bifurcation is considered for the Newtonian model of vibro-impact systems. A brief review on the conditions, sufficient for existence of a grazing family of periodic solutions, is given. The properties of these periodic solutions are discussed. A plenty of results on the topological structure of attractors of vibro-impact systems is known. However, since the considered system is strongly nonlinear, these attractors may be invisible or, at least, very sensitive to changes of parameters of the system. On the other hand, they are observed in experiments and numerical simulations. We offer (Theorem 2) an approach which allows to explain this contradiction and give a new robust mathematical model of the non-hyperbolic dynamics in the neighborhood of grazing.Comment: Submitted to Physica

    Far-field spectral characterization of conical emission and filamentation in Kerr media

    Full text link
    By use of an imaging spectrometer we map the far-field (θλ\theta-\lambda) spectra of 200 fs optical pulses that have undergone beam collapse and filamentation in a Kerr medium. By studying the evolution of the spectra with increasing input power and using a model based on stationary linear asymptotic wave modes, we are able to trace a consistent model of optical beam collapse high-lighting the interplay between conical emission, multiple pulse splitting and other effects such as spatial chirp.Comment: 8 pages, 9 figure

    Argon behaviour in an inverted Barrovian sequence, Sikkim Himalaya: the consequences of temperature and timescale on <sup>40</sup>Ar/<sup>39</sup>Ar mica geochronology

    Get PDF
    40Ar/39Ar dating of metamorphic rocks sometimes yields complicated datasets which are difficult to interpret in terms of timescales of the metamorphic cycle. Single-grain fusion and step-heating data were obtained for rocks sampled through a major thrust-sense shear zone (the Main Central Thrust) and the associated inverted metamorphic zone in the Sikkim region of the eastern Himalaya. This transect provides a natural laboratory to explore factors influencing apparent 40Ar/39Ar ages in similar lithologies at a variety of metamorphic pressure and temperature (P–T) conditions. The 40Ar/39Ar dataset records progressively younger apparent age populations and a decrease in within-sample dispersion with increasing temperature through the sequence. The white mica populations span ~ 2–9 Ma within each sample in the structurally lower levels (garnet grade) but only ~ 0–3 Ma at structurally higher levels (kyanite-sillimanite grade). Mean white mica single-grain fusion population ages vary from 16.2 ± 3.9 Ma (2σ) to 13.2 ± 1.3 Ma (2σ) from lowest to highest levels. White mica step-heating data from the same samples yields plateau ages from 14.27 ± 0.13 Ma to 12.96 ± 0.05 Ma. Biotite yield older apparent age populations with mean single-grain fusion dates varying from 74.7 ± 11.8 Ma (2σ) at the lowest structural levels to 18.6 ± 4.7 Ma (2σ) at the highest structural levels; the step-heating plateaux are commonly disturbed. Temperatures > 600 °C at pressures of 0.4–0.8 GPa sustained over > 5 Ma, appear to be required for white mica and biotite ages to be consistent with diffusive, open-system cooling. At lower temperatures, and/or over shorter metamorphic timescales, more 40Ar is retained than results from simple diffusion models suggest. Diffusion modelling of Ar in white mica from the highest structural levels suggests that the high-temperature rocks cooled at a rate of ~ 50–80 °C Ma− 1, consistent with rapid thrusting, extrusion and exhumation along the Main Central Thrust during the mid-Miocene

    Fermi Surface and gap parameter in high-Tc superconductors: the Stripe Quantum Critical Point scenario

    Full text link
    We study the single-particle spectral properties of electrons coupled to quasicritical charge and spin fluctuations close to a stripe-phase, which is governed by a Quantum Critical Point near optimum doping. We find that spectral weight is transferred from the quasiparticle peak to incoherent dispersive features. As a consequence the distribution of low-laying spectral weight is modified with respect to the quasiparticle Fermi surface. The interplay of charge and spin fluctuations reproduces features of the observed Fermi surface, such as the asymmetric suppression of spectral weight near the M points of the Brillouin zone. Within the model, we also analyze the interplay between repulsive spin and attractive charge fluctuations in determining the symmetry and the peculiar momentum dependence of the superconducting gap parameter. When both spin and charge fluctuations are coupled to the electrons, we find dx2y2d_{x^2-y^2}-wave gap symmetry in a wide range of parameter. A crossover dd- vs ss-wave symmetry of the gap may occur when the strength of charge fluctuations increases with respect to spin fluctuations.Comment: 18 pages, 3 included figures, to be published on Physica

    A blinded, randomized, controlled trial assessing conservative management strategies for frozen shoulder

    Get PDF
    BACKGROUND: There is little evidence for the optimal form of nonoperative treatment in the management of frozen shoulder. This study assesses the efficacy of current physiotherapy strategies. METHODS: All primary care referrals of frozen shoulder to our physiotherapy department were included during a 12-month period. Of these referrals, 17% met the inclusion criteria for primary idiopathic frozen shoulder. The 75 patients were randomly assigned to 1 of 3 groups: group exercise class, individual physiotherapy, and home exercises alone. A single independent physiotherapist, who was blinded to the treatment groups, made all assessments. Range of motion, Constant score, Oxford Shoulder Score, Short Form 36, and Hospital Anxiety and Disability Scale (HADS) outcome measures were performed at baseline, 6 weeks, 6 months, and 1 year. RESULTS: The exercise class group improved from a mean Constant score of 39.8 at baseline to 71.4 at 6 weeks and 88.1 at 1 year. There was a significant improvement in shoulder symptoms on Oxford and Constant scores (P < .001). This improvement was greater than with individual physiotherapy or home exercises alone (P < .001). The improvement in range of motion was significantly greater in both physiotherapy groups over home exercises (P < .001). HADS scores significantly improved during the course of treatment (P < .001). The improvement in HADS anxiety score was significantly greater in both physiotherapy intervention groups than in home exercises alone. CONCLUSIONS: A hospital-based exercise class can produce a rapid recovery from a frozen shoulder with a minimum number of visits to the hospital and is more effective than individual physiotherapy or a home exercise program

    Quantum transport through a DNA wire in a dissipative environment

    Get PDF
    Electronic transport through DNA wires in the presence of a strong dissipative environment is investigated. We show that new bath-induced electronic states are formed within the bandgap. These states show up in the linear conductance spectrum as a temperature dependent background and lead to a crossover from tunneling to thermal activated behavior with increasing temperature. Depending on the strength of the electron-bath coupling, the conductance at the Fermi level can show a weak exponential or even an algebraic length dependence. Our results suggest a new environmental-induced transport mechanism. This might be relevant for the understanding of molecular conduction experiments in liquid solution, like those recently performed on poly(GC) oligomers in a water buffer (B. Xu et al., Nano Lett 4, 1105 (2004)).Comment: 5 pages, 3 figure
    corecore